Engineering Synechocystis PCC6803 for Hydrogen Production: Influence on the Tolerance to Oxidative and Sugar Stresses

نویسندگان

  • Marcia Ortega-Ramos
  • Thichakorn Jittawuttipoka
  • Panatda Saenkham
  • Aurelia Czarnecka-Kwasiborski
  • Hervé Bottin
  • Corinne Cassier-Chauvat
  • Franck Chauvat
چکیده

In the prospect of engineering cyanobacteria for the biological photoproduction of hydrogen, we have studied the hydrogen production machine in the model unicellular strain Synechocystis PCC6803 through gene deletion, and overexpression (constitutive or controlled by the growth temperature). We demonstrate that the hydrogenase-encoding hoxEFUYH operon is dispensable to standard photoautotrophic growth in absence of stress, and it operates in cell defense against oxidative (H₂O₂) and sugar (glucose and glycerol) stresses. Furthermore, we showed that the simultaneous over-production of the proteins HoxEFUYH and HypABCDE (assembly of hydrogenase), combined to an increase in nickel availability, led to an approximately 20-fold increase in the level of active hydrogenase. These novel results and mutants have major implications for those interested in hydrogenase, hydrogen production and redox metabolism, and their connections with environmental conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Light Wavelength Dependency in Red-Orange Spectrum on Continuous Culture of Synechocystis sp. PCC6803

In this study, the effect of light wavelength on growth rate and lipid production of Synechocystis was investigated. Continuous cultivation system was used to have uniform cell density and avoid self-shading in order to obtain more precise results. Based on previous studies, red light is more efficient than other colors in the visible spectrum for cultivation of Synechocystis; however, the opti...

متن کامل

Function and Regulation of Ferredoxins in the Cyanobacterium, Synechocystis PCC6803: Recent Advances

Ferredoxins (Fed), occurring in most organisms, are small proteins that use their iron-sulfur cluster to distribute electrons to various metabolic pathways, likely including hydrogen production. Here, we summarize the current knowledge on ferredoxins in cyanobacteria, the prokaryotes regarded as important producers of the oxygenic atmosphere and biomass for the food chain, as well as promising ...

متن کامل

Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism

Succinate produced by microorganisms can replace currently used petroleum-based succinate but typically requires mono- or poly-saccharides as a feedstock. The cyanobacterium Synechocystis sp. PCC6803 can produce organic acids such as succinate from CO2 not supplemented with sugars under dark anoxic conditions using an unknown metabolic pathway. The TCA cycle in cyanobacteria branches into oxida...

متن کامل

Effects of Hydrogen Sulfide on Cold-Induced Oxidative Damage in Cucumis sativus L.

One of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops is low temperature. Hydrogen sulfide (H2S) is an important signaling molecule involved in several stress-resistance processes such as drought, salinity and heavy metal stresses in plants. The aim of this study was to investigate the effects of exogenous H2S...

متن کامل

Multidisciplinary Evidences that Synechocystis PCC6803 Exopolysaccharides Operate in Cell Sedimentation and Protection against Salt and Metal Stresses

Little is known about the production of exopolysaccharides (EPS) in cyanobacteria, and there are no genetic and physiological evidences that EPS are involved in cell protection against the frequently encountered environmental stresses caused by salt and metals. We studied four presumptive EPS production genes, sll0923, sll1581, slr1875 and sll5052, in the model cyanobacterium Synechocystis PCC6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014